Precipitation Calibration for the NCEP Global Ensemble Forecast System

*Yan Luo and Yuejian Zhu

*SAIC at Environmental Modeling Center, NCEP/NWS, Camp Springs, MD Environmental Modeling Center, NCEP/NWS, Camp Springs, MD

Acknowledgements:

Bo Cui, Dingchen Hou, Steve Lord, Julie Demargne and John schaake

5th NCEP Ensemble User Workshop 10-12 May, 2011, Laurel, Maryland

Objective

 Develop and enhance bias-correction and downscaling techniques that apply to the NCEP ensemble precipitation forecasts to gain more reliable and much finer resolution products.

NCEP GFS/GEFS precipitation forecast products

Level 1 products- model direct output

Level 2 products - 1st Post-processing

6h-QPF—
High Reso. GFS
Low Reso. GEFS/CTL
20 GEFS ensembles:
1 deg, globally

Bias corrected
6h-QPF/PQPF—
High Reso. GFS
Low Reso. GEFS/CTL
20 GEFS ensembles:
1 deg, globally

More reliable

Level 3 products – 2nd Post-processing

Green: operational, verified against

1deg CCPA

Blue: developed and tested, verified

against 1 deg CCPA

Purple: developed and tested, verified

against 5KM NDGD CCPA

Downscaled 6h-QPF/PQPF —

High Reso. GFS Low Reso. GEFS/CTL 20 GEFS ensembles:

5KM, NDGD, CONUS

Much finer

Current capabilities in calibration of QPF/PQPF for NCEP GFS/GEFS ensembles

- Bias correction for NCEP operational ensemble precipitation forecasts at higher temporal and spatial resolution
- An upgrade from May 2004 implementation (2.5*2.5 deg, daily)
- Frequency match algorithm
- Bias corrected at 1 degree model output grid, globally
- 4 cycles per day, 6-hr accumulation
- Every 6 hours, out to 384 hours
- GFS, GEFS 20+1 members
- Construct Cumulative Frequency Distribution for each River Forecast Center (RFC) instead of previously CONUS
- Select 9 thresholds: 0.2, 1, 2, 3.2, 5, 7, 10, 15, 25 mm/6hrs
- Use decaying weight = 0.02 (50 days decaying)
- CCPA used as best analysis (truth)

Current capabilities in calibration of QPF/PQPF for NCEP GFS/GEFS ensembles (cont'd)

- 2. Statistical downscaling bias corrected precipitation forecast to 5KM
- Use first 6 hours bias corrected forecast (at 1degree) as model analysis and interpolate to 5KM NDGD grid
- Use CCPA at 5KM NDGD grid as a proxy truth
- Generate downscaling vector by calculating two CDFs from the above for each RFC using high decaying weight = 0.1 (10 days decaying)
- Interpolate 1 degree bias corrected forecast to 5KM NDGD grid
- Apply downscaling vectors through frequency matching the forecast CDF to true CDF
- Produce downscaled GFS, GEFS 20+1 QPF/PQPF on 5km NDGD grid over CONUS
- 4 cycle per day
- Every 6 hours out to 384 hours

CCPA Dataset

- Climatology-Calibrated Precipitation Analysis (CCPA)
 - A new dataset of precipitation analysis, over CONUS at 6h, ~4km resolution
 - Statistical adjustment of Stage IV data toward CPC analysis
 - Simple linear regression at 0.125 degree and 24h accumulation
 - Keep the fine scale structures of Stage IV
 - Closer to CPC Unified Precipitation Analysis, in the sense of climatology
- Application: Provide a proxy of truth for precipitation forecast calibration and downscaling
- Developed and distributed by NCEP/EMC for operation
- Operational implementation on July 13, 2010
- Product period: 2002 present
- Product grids:
 - HRAP (primary)
 - NDGD, 0.125, 0.5 and 1.0 degree resolutions (byproducts)
- CCPA upgrade: Add 3-hourly precipitation analysis Q3 2011
- •CCPA websites:

Introduction http://www.emc.ncep.noaa.gov/gmb/yzhu/html/imp/201007 imp.html Image http://www.emc.ncep.noaa.gov/gmb/yluo/CCPA.html

How the Precipitation Calibration System Works Part I: Bias Correction

CDF₀: initialized from any a 365-day average of CDF

How the Precipitation Calibration System Works Part I: Bias Correction (cont'd)

How the Precipitation Calibration System Works Part II: Statistical Downscaling

CDF₀: initialized from any a 365-day average of CDF

How the Precipitation Calibration System Works Part II: Statistical Downscaling (cont'd)

QPF EXAMPLE (1*1 deg)

NCEP/GFS Quantitative Precipitation Forecast (QPF) Ini: 2010012400

- Larger reduction in precipitation extent
- •Slight reduction in QPF amounts
- Much closer to OBS(CCPA)

PQPF EXAMPLE (1*1 deg)

- Larger reduction in precipitation extent
- Slight reduction in QPF amounts
- Agree much with OBS(CCPA)

Ens Prob of Precip Amount Exceeding 0.01 inch (0.254 mm/6hrs) Ini: 2010012400

Significantly reduced bias

Mostly improved ETS

Reduced RMSE and ABSE for GFS and GEFS/CTL

RMSE:

- •Significantly smaller RMSE in GFS
- Marginally smaller RMSE in GEFS/CTL

ABSE:

•Both smaller than raw FCSTs.

Improved RMSE, ABSE and CRPS for GEFS ensembles

Ensemble Precipitation Verification for CONUS RMSE, ABSE, SPREAD and CRPS Average For 20090301 - 20100228

QPF EXAMPLE (5KM NDGD)

PQPF EXAMPLE (5KM NDGD)

Downscaling to 5Km NDGD:

- •Better capture high amount QPF in area and amount
- Much closer to OBS(CCPA)
- •Still less detail than OBS

Comparison of bias score after bias correction

1*1 deg V.S. 5KM NDGD

Comparison of bias corrected QPF before and after Downscaling

Summary

- Frequency match algorithm is an effective way to remove model bias
- 1-deg bias-corrected forecasts
 - Much reduced bias.
 - Improved skill scores for ETS, reduced RMSE, ABSE and CRPS
 - Work well for low amount precipitation
- 5km NDGD downscaled forecasts
 - Much reduced bias.
 - Improved skill scores for ETS and TSS for high amount precipitation

Future Work

- Transition the precipitation bias correction component within NAEFS to NCEP operations Q4 2011
- Evaluate calibrated products
- Explore Pseudo Precipitation approach by collaborating with GSD/ESRL (Testing Bayesian Process of Ensemble).
- Explore Analog method by introducing 30yr ensemble reforecast (Tom Hamill)